CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY (Autonomous)

Department of Electrical and Electronics Engineering

A TWO YEAR (I–IV Semesters) PG Program POWER SYSTEMS AND POWER ELECTRONICS

1. VISION & MISSION OF THE INSTITUTE:

Vision: To be center of excellence in technical education and research

Mission: To address the emerging needs through quality technical education and advanced research.

2. VISION & MISSION OF THE DEPARTMENT:

Department Vision:

To achieve Academic and Professional Excellence in Teaching and Research in the frontier areas of Electrical and Electronics Engineering Vis-a -Vis serve as a Valuable Resource for Industry and Society.

Department Mission:

Empowering the Faculty and Student Rendezvous to Nurture Interest for Conceptual Keystone, Applied Multidisciplinary Research, Inspiring Leadership, and Efficacious Entrepreneurship culture, Impeccable Innovation in frontier areas to be synergetic with Environmental, Societal and Technological Developments of the National and International community for Universal Intimacy.

M1: Emphasis on providing Strong Theoretical Foundation & Engineering Leadership Eminence, infusion of Creativity and Management skill while maintaining Ethics and Moral for Sustainable Development. (Individual development).

M2: Enable the Faculty and Student Interactions to trigger interest for Applied Multidisciplinary Research and Entrepreneurship Culture resulting in Significant Advancement of the field of Specialization with Involvement of Industries and Collaborative Educational Networks. (Sense of Ownership, Networking, and Eco system development).

M3: Extend the Conducive Neighbourhoods for Innovation in frontier areas to keep pace with Environmental, Societal and Technological Developments of the National and International Community to Serve Humanity. (Service to Society, Atmanirbhar Bharat).

Dr. M Balasubbareddy HOD, EEE-CBIT

Program Educational Objectives of M.E (Power Systems & Power Electronics) Program:

- PEO 1: Will excel in Power System and Power Electronics area.
- PEO 2: Will become successful in executing software related applications.
- PEO 3: Will carry out research in new technologies relevant to PS & PE.
- PEO 4: Will develop with professional ethics, effective communication skills and knowledge of societal impacts of computing technologies.

Program Outcomes of M.E (Power System & Power Electronics) Program

PO 1: An ability to independently carry out research/investigation and development work to solve practical problems.

PO 2: Ability to write and present a substantial technical report/document.

PO 3: Student should be able to demonstrate a degree of mastery over the area as per the Specialization of the Program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

PO 4: The Student will be able to analyze, design and develop new control strategies in the areas of Power systems and Power electronics suitable for Industry requirements.

CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY (Autonomous) Department of Electrical and Electronics Engineering Course outcomes statements ME-PSPE

S.NO	Year/ SEM	Code No.	Subject	Course Outcome Statements
1	lst /I-SEM	23EEC101	Real-time control of power systems	 Understand supervisory control and data acquisition Develop mathematical models for analysis of linear and nonlinear state estimation, Observability and Contingency analysis of any practical Power System Prepare the practical input data required for linear and nonlinear state estimation methods and contingency analysis. Analyse the power system security and challenges in secure operation of power systems. Have a complete overview of Real Time operation of Power Systems (RTPS), communication and protocols employed in PTPS
2	1st /I-SEM	23EEC102	Analysis of Power Converters	 Select appropriate switching devices for power converters Design switch mode converters like buck, boost, buck-boost and Cuk converters. Analyze the Switching DC Power Supplies. Analyze and design load and switch resonant converters. Synthesize and design magnetic components for power converter.
3	1st /I-SEM	23EEE111	Restructured Power Systems	 Analyze the operation of power system in de-regulated and competitive environment Understand operation and planning policies in deregulated environment. Explore various transmission pricing methodologies. Distinguish different ancillary services provided by the ISO Understand open access same-time information system.
4	1st /I-SEM	23EEE114	Machine Learning and Applications	 Understand basic concepts of Machine Learning Techniques Understand the different types of datasets. Develop skills in using machine learning algorithms for solving practical problems.

				4. Analyze and work with different datasets.
				5 Apply Machine Learning Algorithms for
				Electrical Engineering problems
5	1st	23EGA101	English for	1. Improve work performance and efficiency,
	/I-SEM		Research	illustrate the nuances of research paper writing and draw conclusions on professional usefulness
			Writing	2. Cleasify different types of response generated
			C	organize the format and citation of sources
				3. Explore various formats of APA, MLA and IEEE
				and set up for writing a research paper.
				4. Draft paragraphs and write theme based thesis
				statements in a scientific manner.
				5. Develop an original research paper while
				publish their papers
6	1st	23MEM10	Research	1. Define research problems, review, and assess the
	/I-SEM	3	Methodolog	quality of literature from various sources
			y and IPR	2. Improve the style and format of writing a report
				for technical paper/ Journal report, understand and
				3 Collect the data by various methods:
				observation, interview, questionnaires.
				4. Analyze problems by statistical techniques:
				ANOVA, F-test, and Chi-square.
				5. Understand apply for patent and copyright
7	lst /I SEM	23EEC103	Advance	1. Find the sequence reactance of the synchronous
	/1-3EIVI		Systems Lab	2. Plot the relay characteristics
			~) = = = = = = = = = =	2. Flot the feral characteristics.
				constants of single-phase transmission line
				4. Learn about various types of faults
				5. Validate the I–V and P-V characteristics of a PV
				module.
8	1st	23EEC104	Advanced	1. Understand the effect of source inductance on
	/I-SEM		Power Electronic	phase controllers
			Circuits and	also illustrate the converter performance with
			Drives Lab	different types of loads
				3. Develop basic control schemes for different
				converters and implement it in
				MAILAB/SIMULINK platfor

				 4. Implement different control schemes for DC Drives and verify it experimentally and/or through simulatio 5. Implement different control schemes for AC Drives and verify it experimentally and/or through simulation.
9	1st/ II - SEM	23EEC105	Advanced Computation al Methods in Power Systems (ACMPS)	 Develop proper mathematical models for analysis of a selected problem like load flow study of Power System and Distribution Network or Fault analysis Determine Power flows with various load flow methods. Obtain the power flows for distribution systems. Develop power system software /implementation algorithm for fault analysis Find the fault currents by implementing algorithms for different faults
10	1st/ II - SEM	23EEC106	Power Converters and Control Techniques for Microgrids (PCCTM)	 Understand the basic concepts and types of microgrid. Analyze various control methods of microgrid. Model different power convertersrequired in microgrid Illustrate the control of AC microgrid Describe the need and control process of DC-DC converter control the DC microgrid.
11	1st/ II - SEM	23EEC107	Data Science Applications in Power Engineering (DSAPE)	 Distinguish between Algorithmic based methods and Knowledge based Methods. Able to distinguish between Artificial Neural Networks and Fuzzy Logic Able to analyze the critical power system data with AI techniques. Adopt Soft Computing techniques for solving Power Engineering Problems. Apply appropriate AI framework for solving Power Engineering Problems.
12	1st/ II - SEM	23EEE115	Smart Grid Technologie s (SGT)	 Identify the difference between smart grid & conventional grid. Demonstrate the role of smart devices such as PMU, IED etc. in Smart Grid Understand the role of SCADA in Smart grid controlling and data acquisition Analyze the operation and control of Micro Grid

				5. Choose the suitable modern communication technologies for the required smart grid operation
13	1st/ II - SEM	23EEE120	Evolutionary Algorithms Applications in Power Engineering (EAAPE)	 Familiarize conventional optimization techniques Analyze the capabilities of bio- Inspired systems and conventional methods for solving optimization problems. Analyze how evolutionary algorithms can be explored and exploited to obtain near global optimal results. Differentiate between evolutionary algorithms Apply bio- Inspired algorithms Power Engineering applications.
14	1st/ II - SEM	23EEC108	Power Systems Computation al Lab (PSC Lab)	 Analyze the power system under various fault conditions. Evaluate the economic dispatch in the power system operation. Estimate the state and Asses the stability of a power system. Analyze the security of power system during Line/Generator outages. Analyze and select artificial intelligence techniques for the Power System operation and control.
15	1st/ II - SEM	23EEC109	Data Science Applications Lab (DSA Lab)	 Analyze and choose suitable AI techniques for power system problems Design fuzzy logic rule-based system. Understand and design neural networks for electrical engineering problems. Understand basic concepts of deep learning algorithms. Analysis of power electronics converters using AI Techniques.
16	1st/ II - SEM	23EEC110	Mini Project	 Organize the literature review identify and formulate the engineering problem. Provide engineering solutions for simple problems utilizing modern tools and methods. Demonstrate a sound technical knowledge of their selected mini project topic. Communicate with engineers and the community have consciousness of surroundings. Adapt the skills and attitudes of a Professional Engineer.

HEAD Dept. of EEE, CBIT (A) Gandipet, Hyderabad-75

17	2nd / III -	20EEE113	Energy Auditing &	1. Acquire the background required for engineers to meet the role of energy managers
	SEM		Management	2. Gain the skills and techniques required to
				implement energy management
				3. Demonstrate energy conservation aspects
				4. Apply the energy conservation techniques to industrial loads
				5. Perform basic energy audit in an organization
18	2nd / III -	20CSO101	Business Analytics	1. To understand the basic concepts of business analytics
	SEM			2. Identify the application of business analytics and use tools to analyze business data
				3. Become familiar with various metrics, measures used in business analytics
				4. Illustrate various descriptive, predictive and prescriptive methods and techniques
				5. Model the business data using various business analytical methods and techniques
19	2nd / III -	20EEC110	Industrial Project	1. State research questions related to main problem and identify the Research methods
	SEM /Dissertation	2. Identify literature for review		
			Phase-1	3. Integrate theory and practice
				4. Apply knowledge and understanding in relation to the agreed area of study.
				5. Communicate in written form by integrating, analysing and applying key texts and practices
20	3rd / IV -	20EEC111	Dissertation- II	1. State research questions related to main problem and identify the Research methods
	SEM			2. Identify literature for review
				3. Integrate theory and practice
				4. Apply knowledge and understanding in relation to the agreed area of study.
				5. Communicate in written form by integrating, analysing and applying key texts and practices

